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REGIOSELECTIVE ALKYL GROUP INTRODUCTION AT THE 3-POSITION OF PYRIDINE
VIA 1,4-BIS(TRIMETHYLSILYL)-1,4-DIHYDROPYRIDINE
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The reaction of 1,4-bis(trimethylsilyl)-1,4-dihydropyridine
with aldehydes and ketones in the presence of tetrabutylammonium
fluoride offers a convenient method for the preparation of 3-

alkylpyridines.

Regioselective introduction of substituents on the pyridine ring has long been
an important subject in organic synthesis. Although the nucleophilic substitution
onto the electron-poor aromatic ring of pyridine is useful as a preparative method
for the 2- and 4-substituted pyridines,l’z) the direct substitution at the 3-posi-
tion is quite difficult.3) Even the recently developed method, which introduces a
substituent at the 3-position through the regioselective lithiation of a directing
group-substituted pyridines, only provides 2,3- or 3,4-disubstituted pyridine de-
rivatives.4)

In the sence of organic synthesis, if the electron-poor aromatic ring of
pyridine is metallated on the nitrogen forming the electron-rich nonaromatic ring,
an electrophilic substitution at the 3-position of hydropyridine ring can be
achieved. The only successful case according to this concept is the reaction of
lithium tetrakis(N-dihydropyridyl)aluminate with alkyl halides leading to some 3-
monosubstituted pyridines.s) As 1,4-bis(trimethylsilyl)-1,4-dihydropyridine is
readily available from the reaction of pyridine with chlorotrimethylsilane in the

6) and this includes a partial structure of N-silylenamine that
7)

presence of lithium
acts as an effective nucleophile at the B-position,
(trimethylsilyl)-1,4-dihydropyridine with electrophilic reagents will open a new

the reaction of 1,4-bis-

route to 3-substituted pyridines.

The present communication describes a facile synthesis of 3-alkylpyridines by
the reaction of 1,4-bis(trimethylsilyl)-1,4-dihydropyridine with aldehydes and
ketones in the presence of tetrabutylammonium fluoride.

The typical procedure to 3-alkylpyridines is presented as follows: each
equivalent mixture of freshly prepared 1,4-bis(trimethylsilyl)-1,4-dihydropyridine
18) and benzaldehyde 2a in anhydrous tetrahydrofuran (THF) was treated with a cata-
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lytic amount of tetrabutylammonium fluoride (10 mol%) at room temperature under
argon atmosphere for 15 h. The crude product obtained from the usual hydrolytic
work-up was purified by a chromatography over silica gel using hexane-ether (5:1)
to give 72% of 3-benzylpyridine 3a (Scheme 1 and Table 1). Its structure was based

on the 1H—NMR,9) 13C—NMR, other spectral data, and the elemental analysis.lO)
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Some other substituted benzaldehydes 2b to 2f reacted with 1 as well under the
reaction conditions shown in Table 1 giving 3b to 3f in moderate yields. As the
major route to 3-benzylpyridines is the reduction of 3-benzoylpyridines which are
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Table 1. Synthesis of 3-Alkylpyridines 3 and 7

Product Conditions?)  Yield/sP) "H-NMR (in CDCl,, § ppm)°®) m*
Temp Time/h 3—CH2 2- and 6-H Others m/e

3a  room temp 15 72 3.92° 8.31-8.49™ 169
3b  room temp 14 58 3.86° 8.31-8.50™  2.26° (p-Me) 183
3c  room temp 15 62 3.83° 8.21-8.40™ 203
3d  room temp 17 47 3.92° 8.24-8.51" 187
3e  room temp 18 63 3.88° 8.19-8.48™  2.17° (0-Me) 183
3f  room temp 17 68 3.85° 8.29-8.51™  2.26° (m-Me) 183
3g  room temp 13 u8 3.90° 8.35-8.52" 159
3h  room temp 16 52°) 4.09° 8.30-8.54™ 175
3i reflux 7 69 2.399 8.20-8.38™  0.829, 1.81™ (i-Pr)
3j reflux 8 56 2.46° 8.27-8.46™  0.89° (t-Bu)
3k reflux 10 23 2.53" 8.32-8.51™  0.90%, 1.12-1.73™ (Pr)
31 reflux 6 35 2.43t 8.21-8.48™  0.85%, 1.05-1.70™ (Bu) 149
Ta reflux 5 64 2.43"(CH) 8.26-8.48™ 1.03-2.08™ (CH,) 161
b reflux 5 13 4.129(CH) 8.28-8.54™ 1.63% (Me) 183
Ic reflux 10 33 2.32™(CH) 8.28-8.55™ o0.83%, 1.57™ (Et)

a) All the reactions were carried out between each equivalent of 1 and 2 in the presence of
tetrabutylammonium fluoride (10 mol%) in anhydrous tetrahydrofuran (10 ml/5 mmol of 1) under
argon. b) Isolated yield c) 3c- NMR (in CDCI3, § ppm) are glven for the followmg
products: 3a: 149.99¢ (2- C), 147,469 (6- C), 139.66° (3-C), 136. 259 (4- C), 123. 349 (5-C),
28.65' (C}12) 3i: 150. 389 (2-C), 7. 119 (6-C), 136.64 (3-C), 136.34 (4-C), 123.04d
(5-C), 42.30% [(cHy), 2s. 97", 22.179 (i-pr).  3j: 151,189 (2-c), w7.139 (6-C), 137.44
(4-C), 134.74°% (3-C), 122. 599 (5-C), u7.09" (CH,), 31. 59%, 29.069 (t-Bu). d) The 1:2
adduct l4a was also obtained in 31% yield. e) 5b was also y|elded (28%).

available from the Friedel-Crafts acylation between pyridine-3-carbonyl chloride
and substituted benzenes, our reaction leading to the ortho- and meta-substituted
benzylpyridines 3d to 3f is of great value.

Similarly, 1 reacted with heterocyclic aldehydes 2g and 2h, aliphatic alde-
hydes 2i to 21, and ketones 6a to 6¢c providing a variety of 3-alkylpyridines 3g to
31 and 7a to 7c, while the reactions with aliphatic aldehydes and ketones required
somewhat harder conditions (Scheme 1 and Table 1).

Although similar side products were formed more or less in most reactions,
the reaction of 1 with 2b isolated a side product 4a which was desilylated into 5a

in a quantitative yield. The spectral data indicate that 4a has two substituents
12)

11)

at the 2- and 5-positions.
The reaction paths to 3-alkylpyridines 3 and 2,5-disubstituted pyridines 4 are

illustrated in Scheme 2. Of the two silyl moieties of 1, the one on the nitrogen

is removed by the attack of silylophile (F ) generating an anionic intermediate A.
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Its nucleophilic addition to an aldehyde 2 forms B which then looses trimethyl-
silanol giving C. The silyl group is again eliminated forming a pentadienyl anion

D.

The major path is the abstraction of proton leading to the 3-alkylpyridine 3

and the minor one is the addition of the second molecule of 2 giving E which is

aromatized into the stable 2,5-disubstituted pyridine 4.

13)
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This compound 1 is readily oxidized into 4-trimethylsilylpyridine in the air.
The freshly prepared 1 according to the reported method (Ref. 5) is contami-
nated with less than 10% of 4-trimethylsilylpyridine.

The 1H-NMR spectrum of 3a was identical with the reported one (Ref. 5).

Analytical samples were prepared by the purification through a gas chromato-
graphy. All the new compounds reported herein gave satisfactory high-mass
spectra or elemenatl analyses.

The 1H—NMR spectra of crude products show that the 3-alkylpyridines 3 and 7
are contaminated with the 2,5-disubstituted pyridines 4 which show the char-
acteristic signals at 5.5-6.0 (CH) and O ppm (TMS). However, they are usually
too little to be isolated.

4a: 1H NMR (CDC1l3) 0.16 (9H, s, TMS), 2.34 (6H, s, p-Me), 3.89 (2H, s,

CH2), 5.89 (1H, s, CH), 7.01-7.58 (10H, m, 3-H, 4-H, and p-tolyl), and 8.37
ppm (1H, s, 6-H); M* m/e 375.

In order to increase the opportunity of reaction between D and 2, 1 was allow-
ed to react with excess of 2b under the same conditions, but the ratio of 3b
to 4b was about the same.
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